Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38400464

RESUMO

This article introduces an algorithm for detecting glucose and silicon levels in solution. The research focuses on addressing the critical need for accurate and efficient glucose monitoring, particularly in the context of diabetic management. Understanding and monitoring silicon levels in the body is crucial due to its significant role in various physiological processes. Silicon, while often overshadowed by other minerals, plays a vital role in bone health, collagen formation, and connective tissue integrity. Moreover, recent research suggests its potential involvement in neurological health and the prevention of certain degenerative diseases. Investigating silicon levels becomes essential for a comprehensive understanding of its impact on overall health and well-being and paves the way for targeted interventions and personalized healthcare strategies. The approach presented in this paper is based on the integration of hyperspectral data and artificial intelligence techniques. The algorithm investigates the effectiveness of two distinct models utilizing SVMR and a perceptron independently. SVMR is employed to establish a robust regression model that maps input features to continuous glucose and silicon values. The study outlines the methodology, including feature selection, model training, and evaluation metrics. Experimental results demonstrate the algorithm's effectiveness at accurately predicting glucose and silicon concentrations and showcases its potential for real-world application in continuous glucose and silicon monitoring systems.


Assuntos
Inteligência Artificial , Glucose , Silício , Automonitorização da Glicemia , Imageamento Hiperespectral , Glicemia , Aprendizado de Máquina
2.
Sensors (Basel) ; 22(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271213

RESUMO

The article presents real-time object detection and classification methods by unmanned aerial vehicles (UAVs) equipped with a synthetic aperture radar (SAR). Two algorithms have been extensively tested: classic image analysis and convolutional neural networks (YOLOv5). The research resulted in a new method that combines YOLOv5 with post-processing using classic image analysis. It is shown that the new system improves both the classification accuracy and the location of the identified object. The algorithms were implemented and tested on a mobile platform installed on a military-class UAV as the primary unit for online image analysis. The usage of objective low-computational complexity detection algorithms on SAR scans can reduce the size of the scans sent to the ground control station.


Assuntos
Redes Neurais de Computação , Radar , Algoritmos , Processamento de Imagem Assistida por Computador
3.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616979

RESUMO

The article presents the application of a hyperspectral camera in mobile robot navigation. Hyperspectral cameras are imaging systems that can capture a wide range of electromagnetic spectra. This feature allows them to detect a broader range of colors and features than traditional cameras and to perceive the environment more accurately. Several surface types, such as mud, can be challenging to detect using an RGB camera. In our system, the hyperspectral camera is used for ground recognition (e.g., grass, bumpy road, asphalt). Traditional global path planning methods take the shortest path length as the optimization objective. We propose an improved A* algorithm to generate the collision-free path. Semantic information makes it possible to plan a feasible and safe path in a complex off-road environment, taking traveling time as the optimization objective. We presented the results of the experiments for data collected in a natural environment. An important novelty of this paper is using a modified nearest neighbor method for hyperspectral data analysis and then using the data for path planning tasks in the same work. Using the nearest neighbor method allows us to adjust the robotic system much faster than using neural networks. As our system is continuously evolving, we intend to examine the performance of the vehicle on various road surfaces, which is why we sought to create a classification system that does not require a prolonged learning process. In our paper, we aimed to demonstrate that the incorporation of a hyperspectral camera can not only enhance route planning but also aid in the determination of parameters such as speed and acceleration.


Assuntos
Imageamento Hiperespectral , Robótica , Algoritmos , Redes Neurais de Computação , Aceleração
4.
Sensors (Basel) ; 21(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204272

RESUMO

This article presents a framework for planning a drone swarm mission in a hostile environment. Elements of the planning framework are discussed in detail, including methods of planning routes for drone swarms using mixed integer linear programming (MILP) and methods of detecting potentially dangerous objects using EO/IR camera images and synthetic aperture radar (SAR). Methods of detecting objects in the field are used in the mission planning process to re-plan the swarm's flight paths. The route planning model is discussed using the example of drone formations managed by one UAV that communicates through another UAV with the ground control station (GCS). This article presents practical examples of using algorithms for detecting dangerous objects for re-planning of swarm routes. A novelty in the work is the development of these algorithms in such a way that they can be implemented on mobile computers used by UAVs and integrated with MILP tasks. The methods of detection and classification of objects in real time by UAVs equipped with SAR and EO/IR are presented. Different sensors require different methods to detect objects. In the case of infrared or optoelectronic sensors, a convolutional neural network is used. For SAR images, a rule-based system is applied. The experimental results confirm that the stream of images can be analyzed in real-time.


Assuntos
Robótica , Algoritmos , Redes Neurais de Computação
5.
Sensors (Basel) ; 19(17)2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31480480

RESUMO

Automated weeding is an important research area in agrorobotics. Weeds can be removed mechanically or with the precise usage of herbicides. Deep Learning techniques achieved state of the art results in many computer vision tasks, however their deployment on low-cost mobile computers is still challenging. The described system contains several novelties, compared both with its previous version and related work. It is a part of a project of the automatic weeding machine, developed by the Warsaw University of Technology and MCMS Warka Ltd. Obtained models reach satisfying accuracy (detecting 47-67% of weed area, misclasifing as weed 0.1-0.9% of crop area) at over 10 FPS on the Raspberry Pi 3B+ computer. It was tested for four different plant species at different growth stadiums and lighting conditions. The system performing semantic segmentation is based on Convolutional Neural Networks. Its custom architecture combines U-Net, MobileNets, DenseNet and ResNet concepts. Amount of needed manual ground truth labels was significantly decreased by the usage of the knowledge distillation process, learning final model which mimics an ensemble of complex models on a large database of unlabeled data. Further decrease of the inference time was obtained by two custom modifications: in the usage of separable convolutions in DenseNet block and in the number of channels in each layer. In the authors' opinion, the described novelties can be easily transferred to other agrorobotics tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...